A review between whole-cells and immobilized lipases technologies for biodiesel and flavor esters production

Autores

DOI:

https://doi.org/10.21674/2448-0479.71.1-18

Palavras-chave:

Enzima, Lipases, Imobilização, Biocatalisadores de células íntegras, Síntese de biodiesel, Ésteres de sabor

Resumo

 Lipases are versatile enzymes that catalyze diverse reactions which allow their applications in various areas of the industry. However, biocatalysis faces an economical obstacle to be able to compete with conventional routes. Different strategies have been studied aiming to reduce the biocatalysts cost and to improve their catalytic activity and stability. Enzymatic immobilization is one of the most efficient strategies for making the enzyme application competitive on a large industrial scale, providing their continuous reuse, ease of separation of the reactional medium and higher process efficiency. Nevertheless, despite the technological advances achieved, biocatalysts are still costly for industrial uses due to enzyme recovery, purification, and immobilization steps. In this context comes the whole cells (WC) technology as a form of immobilization in which the cells themselves, usually grown on a support, are applied in the biotransformation process, containing the proteins of interest adhered to their surface, allowing easy separation, reuse and dispensing the purification step. Although whole cells technology has become a valuable tool for many biotransformation processes, there are some inherent drawnbacks associated that hindered its advance in industrial scale, and many studies have been performed aiming to optimize their performance. This paper presents a review between whole cells and immobilized lipases technologies, mainly related to biodiesel and flavor esters synthesis, since these are largely reported in literature.

Keywords: Enzyme. Lipases. Immobilization. Whole cells biocatalysts. Biodiesel synthesis. Flavor esters.

Uma revisão entre tecnologias de células íntegras e lipases imobilizadas para produção de biodiesel e ésteres de sabor

As lipases são enzimas versáteis que catalisam diversas reações e podem ser aplicadas em várias áreas da indústria. No entanto, a biocatálise enfrenta um obstáculo econômico para poder competir com as rotas convencionais. Diferentes estratégias têm sido estudadas com o objetivo de reduzir o custo dos biocatalisadores e melhorar a atividade e estabilidade catalítica. A imobilização enzimática é uma das estratégias mais eficientes para tornar a aplicação de enzimas competitiva em larga escala industrial, proporcionando reutilização contínua, facilidade de separação do meio reacional e maior eficiência do processo. No entanto, apesar dos avanços tecnológicos alcançados, os biocatalisadores ainda são caros para usos industriais devido às etapas de recuperação, purificação e imobilização de enzimas. Nesse contexto, surge a tecnologia de células integras (CI) como uma forma de imobilização, na qual as próprias células, geralmente cultivadas em um suporte, são aplicadas no processo de biotransformação, contendo as proteínas de interesse aderidas à sua superfície, permitindo fácil separação, reutilização e dispensando a etapa de purificação. Embora a tecnologia de células inteiras tenha se tornado uma ferramenta valiosa para muitos processos de biotransformação, existem alguns inconvenientes inerentes, que impediram seu avanço em escala industrial, e muitos estudos foram realizados com o objetivo de otimizar seu desempenho. Este artigo apresenta uma revisão entre as tecnologias de células íntegras e de lipases imobilizadas, principalmente relacionadas às sínteses de biodiesel e de ésteres de sabor, uma vez que estas são amplamente relatadas na literatura.

Palavras-chave: Enzima. Lipases. Imobilização. Biocatalisadores de células íntegras. Síntese de biodiesel. Ésteres de sabor.

Resumen

Una revisión entre las tecnologías de células enteras y lipasas inmovilizadas para la producción de biodiésel y ésteres de sabor

Las lipasas son enzimas versátiles que catalizan diversas reacciones que permiten su aplicación en diversas áreas de la industria. Sin embargo, la biocatálisis se enfrenta a un obstáculo económico para poder competir con las rutas convencionales. Se han estudiado diferentes estrategias con el objetivo de reducir el costo de los biocatalizadores y mejorar su actividad catalítica y estabilidad. La inmovilización enzimática es una de las estrategias más eficientes para hacer que la aplicación de enzimas sea competitiva en gran escala industrial, proporcionando su reutilización continua, facilidad de separación del medio de reacción y mayor eficiencia del proceso. Sin embargo, a pesar de los avances tecnológicos logrados, los biocatalizadores siguen siendo costosos para usos industriales debido a los pasos de recuperación, purificación e inmovilización de enzimas. En este contexto, surge la tecnología de células enteras (WC) como una forma de inmovilización en la que las propias células, generalmente cultivadas sobre un soporte, se aplican en el proceso de biotransformación, conteniendo las proteínas de interés adheridas  su superficie, permitiendo una fácil separación, reutilización y dispensar la etapa de purificación. Mismo que la tecnología de células enteras se ha convertido en una herramienta valiosa para muchos procesos de biotransformación, existen algunos inconvenientes inherentes asociados que afectaron su avance a escala industrial, y se han realizado muchos estudios con el objetivo de optimizar su desempeño. Este artículo presenta una revisión entre las tecnologías de células enteras y lipasas inmovilizadas, principalmente relacionadas con la síntesis de biodiesel y ésteres de sabor, ya que estos están ampliamente reportados en la literatura.

Palabras clave: Enzima. Lipasas. Inmovilización. Biocatalizadores de células enteras. Síntesis de biodiesel. Ésteres aromatizantes.

Downloads

Não há dados estatísticos.

Biografia do Autor

Rodrigo Sardagna, Universidade Estadual do Rio Grande do SUL (UERGS)

William Lopes, Universidade Federal do Rio Grande do Sul (UFRGS)

Lúcia Allebrandt da Silva Ries, Universidade Estadual do Rio Grande do SUL (UERGS)

Referências

References

ABU-DIEF, Ahmed M.; ABDEL-FATAH, Shimaa Mahdy. Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. Beni-Suef University Journal of Basic and Applied Sciences, [S. l.], v. 7, n. 1, p. 55–67, 2018. DOI: https://doi.org/10.1016/j.bjbas.2017.05.008. Acessed on: Sept. 8th, 2019.

AGUIEIRAS, Erika C. G.; CAVALCANTI-OLIVEIRA, Elisa D.; FREIRE, Denise M. G. Current status and new developments of biodiesel production using fungal lipases. Fuel, [S. l.], v. 159, p. 52–67, 2015. DOI: https://doi.org/10.1016/j.fuel.2015.06.064. Acessed on: Aug. 9th, 2019.

AHMAD, Mudassar et al. Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology, [S. l.], v. 98, n. 12, p. 5301–5317, 2014. DOI: https://doi.org/10.1007/s00253-014-5732-5. Acessed on: Oct. 10, 2019.

ARSALAN, Abdullah; YOUNUS, Hina. Enzymes and nanoparticles: Modulation of enzymatic activity via nanoparticles. International Journal of Biological Macromolecules, [S. l.], v. 118, p. 1833–1847, 2018. DOI: https://doi.org/10.1016/j.ijbiomac.2018.07.030. Acessed on: June 8, 2019.

ARUMUGAM, A.; PONNUSAMI, V. Biodiesel production from Calophyllum inophyllum oil using lipase producing Rhizopus oryzae cells immobilized within reticulated foams. Renewable Energy, [S. l.], v. 64, p. 276–282, 2014. DOI: https://doi.org/10.1016/j.renene.2013.11.016. Acessed on: April 17, 2019.

ATHALYE, Sneha et al. Producing biodiesel from cottonseed oil using Rhizopus oryzae ATCC #34612 whole cell biocatalysts: Culture media and cultivation period optimization. Energy for Sustainable Development, [S. l.], v. 17, n. 4, p. 331–336, 2013. DOI: https://doi.org/10.1016/j.esd.2013.03.009. Acessed on: Oct. 15, 2019.

BALASUBRAMANIAM, Bharathiraja et al. Comparative analysis for the production of fatty acid alkyl esterase using whole cell biocatalyst and purified enzyme from Rhizopus oryzae on waste cooking oil (sunflower oil). Waste Management, [S. l.], v. 32, n. 8, p. 1539–1547, 2012. DOI: https://doi.org/10.1016/j.wasman.2012.03.011. Acessed on: Aug. 13, 2019.

BAN, Kazuhiro et al. Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochemical Engineering Journal, [S. l.], v. 8, n. 1, p. 39–43, 2001. DOI: https://doi.org/10.1016/S1369-703X(00)00133-9. Acessed on: Sept. 5, 2019.

BARÃO, Carlos Eduardo et al. Characterization of free and immobilized thermomyces lanuginosus lipase for use in transesterification reactions. Industrial Biotechnology, [S. l.], v. 10, n. 4, p. 305–309, 2014. DOI: https://doi.org/10.1089/ind.2014.0011. Acessed on: Oct. 23, 2019.

BARRIUSO, Jorge et al. Structural traits and catalytic versatility of the lipases from the Candida rugosa-like family: A review. Biotechnology Advances, [S. l.], v. 34, n. 5, p. 874–885, 2016. DOI: https://doi.org/10.1016/j.biotechadv.2016.05.004. Acessed on: May 14, 2019.

BASSI, Jaquelinne J. et al. Interfacial activation of lipases on hydrophobic support and application in the synthesis of a lubricant ester. International Journal of Biological Macromolecules, [S. l.], v. 92, p. 900–909, 2016. DOI: https://doi.org/10.1016/j.ijbiomac.2016.07.097. Access on: 4 Oct., 2019.

BENTO, H. B. S. et al. Magnetized poly(STY-co-DVB) as a matrix for immobilizing microbial lipase to be used in biotransformation. Journal of Magnetism and Magnetic Materials, [S. l.], v. 426, n. August 2016, p. 95–101, 2017. DOI: https://doi.org/10.1016/j.jmmm.2016.11.061. Access on: 6 Nov., 2019.

BERGAMASCO, Juliana et al. Enzymatic transesterification of soybean oil with ethanol using lipases immobilized on highly crystalline PVA microspheres. Biomass and Bioenergy, [S. l.], v. 59, p. 218–233, 2013. DOI: https://doi.org/10.1016/j.biombioe.2013.09.006. Access on: 24 Nov., 2019.

BHARATHI, Devaraj; RAJALAKSHMI, G. Microbial lipases: An overview of screening, production and purification. Biocatalysis and Agricultural Biotechnology, [S. l.], v. 22, p. 101368, 2019. DOI: https://doi.org/10.1016/j.bcab.2019.101368. Acessed on: Feb. 4, 2019.

BILAL, Muhammad et al. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. International Journal of Biological Macromolecules, [S. l.], v. 120, p. 2530–2544, 2018. DOI: https://doi.org/10.1016/j.ijbiomac.2018.09.025. Acessed on: Nov. 6, 2019.

BIROLLI, Willian G.; PORTO, André L. M.; FONSECA, Luis P. Miniemulsion in biocatalysis, a new approach employing a solid reagent and an easy protocol for product isolation applied to the aldol reaction by Rhizopus niveus lipase. Bioresource Technology, [S. l.], v. 297, p. 122441, 2020. Disponível em: https://doi.org/10.1016/j.biortech.2019.122441. Acessed on: Nov. 6, 2020.

BRAULT, Guillaume et al. Short-chain flavor ester synthesis in organic media by an E. coli whole-cell biocatalyst expressing a newly characterized heterologous lipase. PLoS ONE, [S. l.], v. 9, n. 3, 2014. DOI: https://doi.org/10.1371/journal.pone.0091872. Acessed on: Sept. 5, 2019.

BROGAN, Alex P. S. et al. Enzyme activity in liquid lipase melts as a step towards solvent-free biology at 150 °c. Nature Communications, [S. l.], v. 5, p. 1–8, 2014. DOI: https://doi.org/10.1038/ncomms6058. Acessed on: Aug. 8, 2019.

BUŠIĆ, Arijana et al. Recent trends in biodiesel and biogas production. Food Technology and Biotechnology, [S. l.], v. 56, n. 2, p. 152–173, 2018. DOI: https://doi.org/10.17113/ftb.56.02.18.5547. Acessed on: Oct. 8, 2019.

CAO, Xi; LIAO, Linmeng; FENG, Fengqin. Purification and characterization of an extracellular lipase from Trichosporon sp. and its application in enrichment of omega-3 polyunsaturated fatty acids. Lwt, [S. l.], v. 118, p. 108692, 2020. DOI: https://doi.org/10.1016/j.lwt.2019.108692. Acessed on: Oct. 7, 2019.

CARVALHO, Carla C. C. R. Enzymatic and whole cell catalysis: Finding new strategies for old processes. Biotechnology Advances, [S. l.], v. 29, n. 1, p. 75–83, 2011. DOI: https://doi.org/10.1016/j.biotechadv.2010.09.001. Access on: 7 Aug., 2019.

CARVALHO, Carla C. C. R.; CARAMUJO, Maria José. The various roles of fatty acids. Molecules, [S. l.], v. 23, n. 10, 2018. DOI: https://doi.org/10.3390/molecules23102583. Access on: 18 Aug., 2019.

CARVALHO, Nayara Bezerra et al. Biochemical properties of Bacillus sp. ITP-001 lipase immobilized with a sol gel process. Quimica Nova, [S. l.], v. 36, n. 1, p. 52–58, 2013. DOI: https://doi.org/10.1590/S0100-40422013000100010. Acessed on: Aug. 6, 2019.

CHANDA, Arani; FOKIN, Valery V. Organic synthesis “on water”. Chemical Reviews, [S. l.], v. 109, n. 2, p. 725–748, 2009. DOI: https://doi.org/10.1021/cr800448q. Acessed on: Jun 17, 2019.

CHEN, Guanyi et al. Biodiesel production using magnetic whole-cell biocatalysts by immobilization of Pseudomonas mendocina on Fe3O4-chitosan microspheres. Biochemical Engineering Journal, [S. l.], v. 113, p. 86–92, 2016. DOI: https://doi.org/10.1016/j.bej.2016.06.003. Acessed on: Jun 17, 2019.

CIPOLATTI, Eliane Pereira et al. Support engineering: relation between development of new supports for immobilization of lipases and their applications. Biotechnology Research and Innovation, [S. l.], v. 1, n. 1, p. 26–34, 2017. DOI: https://doi.org/10.1016/j.biori.2017.01.004. Acessed on: May 11, 2019.

COLLA, Luciane Maria et al. Surface response methodology for the optimization of lipase production under submerged fermentation by filamentous fungi. Brazilian Journal of Microbiology, [S. l.], v. 47, n. 2, p. 461–467, 2016. DOI: https://doi.org/10.1016/j.bjm.2016.01.028. Acessed on: Oct. 20, 2019.

CORTEZ, D.V.; CASTRO, H.F.; ANDRADE, G.S.S. Potencial catalítico de lipases ligadas ao micélio de fungos filamentosos em processos de biotransformação. Química Nova 40(1):85-95. 2017.

DOI:http://dx.doi.org/10.21577/0100-4042.20160163. Acessed on: April. 5, 2019.

COSTA, T. M. et al. Lipase production by aspergillus Niger grown in different agro-industrial wastes by solid-state fermentation. Brazilian Journal of Chemical Engineering, [S. l.], v. 34, n. 2, p. 419–427, 2017. DOI: https://doi.org/10.1590/0104-6632.20170342s20150477. Acessed on: Sept. 25, 2019.

CRESPY, Daniel; LANDFESTER, Katharina. Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers. Beilstein Journal of Organic Chemistry, [S. l.], v. 6, p. 1132–1148, 2010. DOI: https://doi.org/10.3762/bjoc.6.130. Acessed on: Sept. 30, 2019.

DIMITRIJEVIĆ, Aleksandra et al. One-step, inexpensive high yield strategy for Candida antarctica lipase A isolation using hydroxyapatite. Bioresource Technology, [S. l.], v. 107, p. 358–362, 2012. DOI: https://doi.org/10.1016/j.biortech.2011.11.077. Access on: 3 Nov., 2019.

FERNANDEZ-LORENTE, Gloria et al. Interfacially activated lipases against hydrophobic supports: Effect of the support nature on the biocatalytic properties. Process Biochemistry, [S. l.], v. 43, n. 10, p. 1061–1067, 2008. DOI: https://doi.org/10.1016/j.procbio.2008.05.009. Acessed on: Aug. 17, 2019.

FURINI, Graciane et al. Production of lipolytic enzymes by bacteria isolated from biological effluent treatment systems. Anais da Academia Brasileira de Ciencias, [S. l.], v. 90, n. 3, p. 2955–2965, 2018. DOI: https://doi.org/10.1590/0001-3765201820170952. Acessed on: Jun 19, 2019.

GEOFFRY, Kiptoo; ACHUR, Rajeshwara N. Screening and production of lipase from fungal organisms. Biocatalysis and Agricultural Biotechnology, [S. l.], v. 14, p. 241–253, 2018. DOI: https://doi.org/10.1016/j.bcab.2018.03.009. Acessed on: Oct. 20, 2019.

GODOY, Mateus G. et al. Agricultural Residues as Animal Feed. [S. l.]: Elsevier B.V., 2018. E-book. DOI: https://doi.org/10.1016/b978-0-444-63990-5.00012-8. Acessed on: May 24, 2019.

GOG, Adriana et al. Biodiesel production using enzymatic transesterification - Current state and perspectives. Renewable Energy, [S. l.], v. 39, n. 1, p. 10–16, 2012. DOI: https://doi.org/10.1016/j.renene.2011.08.007. Acessed on: Oct. 11, 2019.

GRAND VIEW RESEARCH. Industrial Enzymes Market Size, Share & Trends Analysis Report By Product (Carbohydrases, Proteases, Lipases, Polymerases & Nucleases), By Source, By Application, By Region, And Segment Forecasts, 2020 - 2027. 2020. Available at https://www.grandviewresearch.com/industry-analysis/industrial-enzymes-market. Acessed on: 21 Nov. 2020.

GUILLÉN, Marina; BENAIGES, Maria Dolors; VALERO, Francisco. Biosynthesis of ethyl butyrate by immobilized recombinant Rhizopus oryzae lipase expressed in Pichia pastoris. Biochemical Engineering Journal, [S. l.], v. 65, p. 1–9, 2012. DOI: https://doi.org/10.1016/j.bej.2012.03.009. Acessed on: Oct. 7, 2019.

GULDHE, Abhishek et al. Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst. Renewable Energy, [S. l.], v. 85, p. 1002–1010, 2016. DOI: https://doi.org/10.1016/j.renene.2015.07.059. Acessed on: Aug. 6, 2019.

HAMA, Shinji et al. Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole-cell biocatalysts in biodiesel-fuel production. Journal of Bioscience and Bioengineering, [S. l.], v. 101, n. 4, p. 328–333, 2006. DOI: https://doi.org/10.1263/jbb.101.328. Acessed on: July 9, 2019.

HAMA, Shinji et al. Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochemical Engineering Journal, [S. l.], v. 34, n. 3, p. 273–278, 2007. DOI: https://doi.org/10.1016/j.bej.2006.12.013. Acessed on: March 28, 2019.

HAMA, Shinji et al. Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production. Biochemical Engineering Journal, [S. l.], v. 21, n. 2, p. 155–160, 2004. DOI: https://doi.org/10.1016/j.bej.2004.05.009. Access on: 17 Oct., 2019.

HAN, Shuang Yan et al. Highly efficient synthesis of ethyl hexanoate catalyzed by CALB-displaying Saccharomyces cerevisiae whole-cells in non-aqueous phase. Journal of Molecular Catalysis B: Enzymatic, [S. l.], v. 59, n. 1–3, p. 168–172, 2009. DOI: https://doi.org/10.1016/j.molcatb.2009.02.007. Acessed on: June 20, 2019.

JIN, Zi et al. Combined utilization of lipase-displaying Pichia pastoris whole-cell biocatalysts to improve biodiesel production in co-solvent media. Bioresource Technology, [S. l.], v. 130, p. 102–109, 2013. DOI: https://doi.org/10.1016/j.biortech.2012.12.020. Acessed on: Aug. 10, 2019.

KARIMI, Mahmoud. Immobilization of lipase onto mesoporous magnetic nanoparticles for enzymatic synthesis of biodiesel. Biocatalysis and Agricultural Biotechnology, [S. l.], v. 8, p. 182–188, 2016. DOI: https://doi.org/10.1016/j.bcab.2016.09.009. Acessed on: Sept. 14, 2019.

KUMAR, Rakesh; GOOMBER, Shelly; KAUR, Jagdeep. Engineering lipases for temperature adaptation: Structure function correlation. Biochimica et Biophysica Acta - Proteins and Proteomics, [S. l.], v. 1867, n. 11, 2019. DOI: https://doi.org/10.1016/j.bbapap.2019.08.001. Acessed on: Nov. 17, 2019.

KUNDYS, Anna et al. Candida antarctica Lipase B as Catalyst for Cyclic Esters Synthesis, Their Polymerization and Degradation of Aliphatic Polyesters. Journal of Polymers and the Environment, [S. l.], v. 26, n. 1, p. 396–407, 2018. DOI: https://doi.org/10.1007/s10924-017-0945-1. Acessed on: Sept. 19, 2019.

LAM, Kin Sing. Application of Whole-Cell Biotransformation in the Pharmaceutical Industry. Biocatalysis for the Pharmaceutical Industry: Discovery, Development, and Manufacturing, [S. l.], p. 213–227, 2009. DOI: https://doi.org/10.1002/9780470823163.ch10. Acessed on: June 9, 2019.

LIN, Baixue; TAO, Yong. Whole-cell biocatalysts by design. Microbial Cell Factories, [S. l.], v. 16, n. 1, p. 1–12, 2017. DOI: https://doi.org/10.1186/s12934-017-0724-7. Acessed on: July 8, 2019.

LIU, Dong Mei; CHEN, Juan; SHI, Yan Ping. Advances on methods and easy separated support materials for enzymes immobilization. TrAC - Trends in Analytical Chemistry, [S. l.], v. 102, p. 332–342, 2018. DOI: https://doi.org/10.1016/j.trac.2018.03.011. Acessed on: April 14, 2019.

LONGO, María Asunción; SANROMÁN, María Angeles. Production of food aroma compounds: Microbial and enzymatic methodologies. Food Technology and Biotechnology, [S. l.], v. 44, n. 3, p. 335–353, 2006.

MAJEWSKA, Paulina et al. Lipases and whole cell biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid and its ester. Bioorganic Chemistry, [S. l.], v. 66, p. 21–26, 2016. DOI: https://doi.org/10.1016/j.bioorg.2016.02.011. Acessed on: Oct. 11, 2019.

MANDARI, Venkatesh; NEMA, Ashutosh; DEVARAI, Santhosh Kumar. Sequential optimization and large scale production of lipase using tri-substrate mixture from Aspergillus niger MTCC 872 by solid state fermentation. Process Biochemistry, [S. l.], 2019. DOI: https://doi.org/10.1016/j.procbio.2019.10.026. Acessed on: March 12, 2019.

MANOEL, Evelin A. et al. Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme and Microbial Technology, [S. l.], v. 71, p. 53–57, 2015. DOI: https://doi.org/10.1016/j.enzmictec.2015.02.001. Acessed on: Nov. 13, 2019.

MANOEL, Evelin A. et al. Design of a core-shell support to improve lipase features by immobilization. RSC Advances, [S. l.], v. 6, n. 67, p. 62814–62824, 2016. DOI: https://doi.org/10.1039/c6ra13350a. Acessed on: Oct. 17, 2019.

MATEO, Cesar et al. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, [S. l.], v. 40, n. 6, p. 1451–1463, 2007. DOI: https://doi.org/10.1016/j.enzmictec.2007.01.018. Acessed on: Sept. 27, 2019.

MATTE, Carla R. et al. Physical-chemical properties of the support immobead 150 before and after the immobilization process of lipase. Journal of the Brazilian Chemical Society, [S. l.], v. 28, n. 8, p. 1430–1439, 2017. DOI: https://doi.org/10.21577/0103-5053.20160319. Acessed on: Aug. 5, 2019.

MELO, Ricardo Rodrigues et al. New heterofunctional supports based on glutaraldehyde-activation: A tool for enzyme immobilization at neutral pH. Molecules, [S. l.], v. 22, n. 7, 2017. DOI: https://doi.org/10.3390/molecules22071088. Access on: 4 Aug., 2019.

MIAO, Changlin et al. Lipase immobilization on amino-silane modified superparamagnetic Fe3O4 nanoparticles as biocatalyst for biodiesel production. Fuel, [S. l.], v. 224, n. January, p. 774–782, 2018. DOI: https://doi.org/10.1016/j.fuel.2018.02.149. Acessed on: Oct. 19, 2019.

MOHAMAD, Nur Royhaila et al. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology and Biotechnological Equipment, [S. l.], v. 29, n. 2, p. 205–220, 2015. DOI: https://doi.org/10.1080/13102818.2015.1008192. Acessed on: Nov. 17, 2019.

OLIVEIRA, Ulisses M. F. et al. Efficient biotechnological synthesis of flavor esters using a low-cost biocatalyst with immobilized Rhizomucor miehei lipase. Molecular Biology Reports, [S. l.], v. 46, n. 1, p. 597–608, 2019. DOI: https://doi.org/10.1007/s11033-018-4514-z. Access on: 14 Sept., 2019.

PEIL, Greice Hartwig Schwanke et al. Bioprospecting of lipolytic microorganisms obtained from industrial effluents. Anais da Academia Brasileira de Ciencias, [S. l.], v. 88, n. 3, p. 1769–1779, 2016. DOI: https://doi.org/10.1590/0001-3765201620150550. Acessed on: Sept. 14, 2019.

PEÑA, David A. et al. Metabolic engineering of Pichia pastoris. Metabolic Engineering, [S. l.], v. 50, n. February, p. 2–15, 2018. DOI: https://doi.org/10.1016/j.ymben.2018.04.017. Acessed on: Aug. 16, 2019.

PENHA, E.M.; VIANA, L.A.N.; GOTTSCHALK, L.M.F.; SELMA C.T.; SOUZA, E.F.; FREITAS, S.C.; SANTOS, J.O.; SALUM, T.F.C. Aproveitamento de resíduos da agroindústria do óleo de dendê para a produção de lipase por Aspergillus Níger. Ciencia Rural 46(4):755-761. 2016. DOI: http://dx.doi.org/10.1590/0103-8478cr20131673. Acessed on: Aug. 10, 2019.

PRABANINGTYAS, Ratri Kirana et al. Production of immobilized extracellular lipase from Aspergillus Niger by solid state fermentation method using palm kernel cake, soybean meal, and coir pith as the substrate. Energy Procedia, [S. l.], v. 153, p. 242–247, 2018. DOI: https://doi.org/10.1016/j.egypro.2018.10.010. Acessed on: Aug. 7, 2019.

QI, Dongming; CAO, Zhihai; ZIENER, Ulrich. Recent advances in the preparation of hybrid nanoparticles in miniemulsions. Advances in Colloid and Interface Science, [S. l.], v. 211, p. 47–62, 2014. DOI: https://doi.org/10.1016/j.cis.2014.06.001. Acessed on: July 9, 2019.

RAJENDRAN, Aravindan; PALANISAMY, Anbumathi; THANGAVELU, Viruthagiri. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY Lipase Catalyzed Ester Synthesis for Food Processing Industries. Arch. Biol. Technol. v, [S. l.], v. 52, n. 1, p. 207–219, 2009. DOI: http://www.scielo.br/pdf/babt/v52n1/a26v52n1.pdf. Acessed on: June 5, 2019.

RAKCHAI, Naruemon; H-KITTIKUN, Aran; ZIMMERMANN, Wolfgang. The production of immobilized whole-cell lipase from Aspergillus nomius ST57 and the enhancement of the synthesis of fatty acid methyl esters using a two-step reaction. Journal of Molecular Catalysis B: Enzymatic, [S. l.], v. 133, p. S128–S136, 2016. DOI: https://doi.org/10.1016/j.molcatb.2016.12.006. Acessed on: Aug. 9, 2019.

REIS, P. et al. Lipases at interfaces: A review. Advances in Colloid and Interface Science, [S. l.], v. 147–148, n. C, p. 237–250, 2009. DOI: https://doi.org/10.1016/j.cis.2008.06.001. Acessed on: Sept. 9, 2019.

RIBEIRO, Bernardo Dias et al. Production and use of lipases in bioenergy: A review from the feedstocks to biodiesel production. Enzyme Research, [S. l.], v. 2011, n. 1, 2011. DOI: https://doi.org/10.4061/2011/615803. Acessed on: Nov. 19, 2019.

RIOS, Nathalia S. et al. Reuse of Lipase from Pseudomonas fluorescens via Its Step-by-Step Coimmobilization on Glyoxyl-Octyl Agarose Beads with Least Stable Lipases. Catalysts, [S. l.], v. 9, n. 5, p. 1–14, 2019. DOI: https://doi.org/10.3390/catal9050487. Acessed on: Nov. 27, 2019.

RIOS, Nathalia Saraiva et al. Biotechnological potential of lipases from Pseudomonas: Sources, properties and applications. Process Biochemistry, [S. l.], v. 75, p. 99–120, 2018. DOI: https://doi.org/10.1016/j.procbio.2018.09.003. Acessed on: Feb. 29, 2019.

RODRIGUES, Rafael C. et al. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnology Advances, [S. l.], v. 37, n. 5, p. 746–770, 2019. DOI: https://doi.org/10.1016/j.biotechadv.2019.04.003. Acessed on: Nov. 11, 2019.

SÁ, Amanda Gomes Almeida et al. A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries. Trends in Food Science and Technology, [S. l.], v. 69, p. 95–105, 2017. DOI: https://doi.org/10.1016/j.tifs.2017.09.004. Acessed on: Sept. 18, 2019.

SANTOS, Jose C. S. et al. Stabilizing hyperactivated lecitase structures through physical treatment with ionic polymers. Process Biochemistry, [S. l.], v. 49, n. 9, p. 1511–1515, 2014. DOI: https://doi.org/10.1016/j.procbio.2014.05.009. Access on: 29 Oct., 2019.

SEKOAI, Patrick T. et al. Application of nanoparticles in biofuels: An overview. Fuel, [S. l.], v. 237, n. September 2018, p. 380–397, 2019. DOI: https://doi.org/10.1016/j.fuel.2018.10.030. Acessed on: Oct. 16, 2019.

SILVA, Vania C. F.; CONTESINI, Fabiano J.; CARVALHO, Patrícia De O. Characterization and catalytic activity of free and immobilized lipase from Aspergillus niger: A comparative study. Journal of the Brazilian Chemical Society, [S. l.], v. 19, n. 8, p. 1468–1474, 2008. DOI: https://doi.org/10.1590/s0103-50532008000800005. Access on: 19 Sept., 2019.

SOUZA, M. C. M. et al. Production of flavor esters catalyzed by Lipase B from Candida antarctica immobilized on magnetic nanoparticles. Brazilian Journal of Chemical Engineering, [S. l.], v. 34, n. 3, p. 681–690, 2017. DOI: https://doi.org/10.1590/0104-6632.20170343s20150575. Access on: 12 Sept., 2019.

SU, Guo Dong et al. Display of Candida antarctica lipase B on Pichia pastoris and its application to flavor ester synthesis. Applied Microbiology and Biotechnology, [S. l.], v. 86, n. 5, p. 1493–1501, 2010. DOI: https://doi.org/10.1007/s00253-009-2382-0. Acessed on: Oct. 4th, 2019.

TACIAS-PASCACIO, Veymar G. et al. Evaluation of different commercial hydrophobic supports for the immobilization of lipases: Tuning their stability, activity and specificity. RSC Advances, [S. l.], v. 6, n. 102, p. 100281–100294, 2016. DOI: https://doi.org/10.1039/c6ra21730c. Acessed on: Aug. 10th, 2019.

TACIN, Mariana Vendrasco et al. Biotechnological valorization of oils from agro-industrial wastes to produce lipase using Aspergillus sp. from Amazon. Biocatalysis and Agricultural Biotechnology, [S. l.], v. 17, n. November 2018, p. 369–378, 2019. DOI: https://doi.org/10.1016/j.bcab.2018.11.013. Acessed on: Aug. 13th, 2019.

TAMALAMPUDI, Sriappareddy et al. Enzymatic production of biodiesel from Jatropha oil: A comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochemical Engineering Journal, [S. l.], v. 39, n. 1, p. 185–189, 2008. DOI: https://doi.org/10.1016/j.bej.2007.09.002. Acessed on: Oct. 18th, 2019.

THANGARAJ, Baskar et al. Catalysis in biodiesel production—a review. Clean Energy, [S. l.], v. 3, n. 1, p. 2–23, 2019. DOI: https://doi.org/10.1093/ce/zky020. Acessed on: June 25th, 2019.

VALÉRIO, Alexsandra et al. Kinetic Study of Candida antarctica Lipase B Immobilization Using Poly(Methyl Methacrylate) Nanoparticles Obtained by Miniemulsion Polymerization as Support. Applied Biochemistry and Biotechnology, [S. l.], v. 175, n. 6, p. 2961–2971, 2015. DOI: https://doi.org/10.1007/s12010-015-1478-5. Acessed on: July 29th, 2019.

VASILESCU, Corina et al. Enzymatic synthesis of short-chain flavor esters from natural sources using tailored magnetic biocatalysts. Food Chemistry, [S. l.], v. 296, n. May, p. 1–8, 2019. DOI: https://doi.org/10.1016/j.foodchem.2019.05.179. Acessed on: Sept. 8th, 2019.

VIEIRA, J.S.C.S. et al. Esterificação e transesterificação homogênea de óleos vegetais contendo alto teor de ácidos graxos livres. Quim. Nova,. 41:10–16. 2018. DOI: http://dx.doi.org/10.21577/0100-4042.20170148. Acessed on: Aug. 15th, 2019.

VIRGEN-ORTÍZ, Jose J. et al. Relevance of substrates and products on the desorption of lipases physically adsorbed on hydrophobic supports. Enzyme and Microbial Technology, [S. l.], v. 96, p. 30–35, 2017 a. DOI: https://doi.org/10.1016/j.enzmictec.2016.09.010. Acessed on: Oct. 24th, 2019.

VIRGEN-ORTÍZ, Jose J. et al. Polyethylenimine: A very useful ionic polymer in the design of immobilized enzyme biocatalysts. Journal of Materials Chemistry B, [S. l.], v. 5, n. 36, p. 7461–7490, 2017 b. DOI: https://doi.org/10.1039/c7tb01639e. Acessed on: Oct. 7th, 2019.

WACHTMEISTER, Jochen; ROTHER, Dörte. Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Current Opinion in Biotechnology, [S. l.], v. 42, p. 169–177, 2016. DOI: https://doi.org/10.1016/j.copbio.2016.05.005. Acessed on: Nov. 9th, 2019.

WANG, You Dong et al. Immobilized recombinant Rhizopus oryzae lipase for the production of biodiesel in solvent free system. Journal of Molecular Catalysis B: Enzymatic, [S. l.], v. 67, n. 1–2, p. 45–51, 2010. DOI: https://doi.org/10.1016/j.molcatb.2010.07.004. Acessed on: Oct. 7th, 2019.

XU, Yan et al. Biosynthesis of ethyl esters of short-chain fatty acids using whole-cell lipase from Rhizopus chinesis CCTCC M201021 in non-aqueous phase. Journal of Molecular Catalysis B: Enzymatic, [S. l.], v. 18, n. 1–3, p. 29–37, 2002. DOI: https://doi.org/10.1016/S1381-1177(02)00056-5. Acessed on: Aug. 18th, 2019.

YAN, Hong De; ZHANG, Qun; WANG, Zhao. Biocatalytic synthesis of short-chain flavor esters with high substrate loading by a whole-cell lipase from Aspergillus oryzae. Catalysis Communications, [S. l.], v. 45, p. 59–62, 2014. DOI: https://doi.org/10.1016/j.catcom.2013.10.018. Acessed on: Aug. 20th, 2019.

YU, Xiao Wei; XU, Yan; XIAO, Rong. Lipases from the genus Rhizopus: Characteristics, expression, protein engineering and application. Progress in Lipid Research, [S. l.], v. 64, p. 57–68, 2016. DOI: https://doi.org/10.1016/j.plipres.2016.08.001. Acessed on: Oct. 8th, 2019.

ZAITSEV, Sergei Yu; SAVINA, Anastasia A.; ZAITSEV, Ilia S. Biochemical aspects of lipase immobilization at polysaccharides for biotechnology. Advances in Colloid and Interface Science, [S. l.], v. 272, p. 102016, 2019. DOI: https://doi.org/10.1016/j.cis.2019.102016. Acessed on: Oct. 28th, 2019.

ZDARTA, Jakub et al. Developments in support materials for immobilization of oxidoreductases: A comprehensive review. Advances in Colloid and Interface Science, [S. l.], v. 258, p. 1–20, 2018. DOI: https://doi.org/10.1016/j.cis.2018.07.004. Acessed on: Nov. 17th, 2019.

ZHANG, Kun et al. Improving the catalytic characteristics of lipase-displaying yeast cells by hydrophobic modification. Bioprocess and Biosystems Engineering, [S. l.], v. 40, n. 11, p. 1689–1699, 2017. DOI: https://doi.org/10.1007/s00449-017-1824-9. Acessed on: June 14th, 2019.

Downloads

Publicado

2021-04-22

Como Citar

Sardagna, R., Lopes, W., & Allebrandt da Silva Ries, L. (2021). A review between whole-cells and immobilized lipases technologies for biodiesel and flavor esters production. Revista Eletrônica Científica Da UERGS , 7(1), 1–18. https://doi.org/10.21674/2448-0479.71.1-18

Edição

Seção

ARTIGOS DE REVISÃO