Interação entre isolados de rizóbios e genótipos de tomateiro (Solanum lycopersicum)
DOI:
https://doi.org/10.21674/2448-0479.33.600-616Palavras-chave:
ácido indolacético, microrganismos, produção de tomatesResumo
Com o melhoramento vegetal, as plantas de tomateiro (Solanum lycopersicum) são selecionadas com vistas a expressar o máximo do seu rendimento, tornando-se mais exigentes em fertilizantes e agrotóxicos. Na busca por sistemas mais sustentáveis de produção, necessita-se entender melhor as interações entre plantas e microrganismos promotores de crescimento. Estes podem ser utilizados como insumos biológicos, no entanto, sua eficiência pode depender da interação entre os genótipos dos organismos envolvidos. Dentre os microrganismos promotores de crescimento, estão os rizóbios, que realizam a fixação biológica de nitrogênio quando associados simbioticamente com leguminosas, que também podem estimular o crescimento de outras famílias botânicas por outros mecanismos. Assim, o objetivo desta pesquisa foi avaliar a produção de diferentes genótipos de tomateiros quando inoculados com quatro isolados de rizóbios. Foi realizado um experimento a campo, bifatorial, com delineamento experimental em blocos casualizados, com três repetições. Cada bloco continha 15 unidades experimentais com oito plantas inoculadas com meio de cultura contendo rizóbios. Foram utilizadas duas variedades crioulas e uma cultivar híbrida, inoculadas com os isolados UFRGS-VP16, UFRGS-Lc336, UFRGS-Lc348 e SEMIA-3007. Os frutos foram colhidos no começo da maturação, pesados e medidos. Os dados foram submetidos à análise de variância e teste Dunnett. As cultivares Cereja e Rosa, ambas crioulas, tiveram aumento de produção com a inoculação com rizóbios, enquanto a variedade Serato, híbrida, não obteve incremento de produção com essa prática.
Downloads
Referências
ABBAMONDI, G. R. et al. Plant growth-promoting effects of rhizo-spheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chemical and Biological Tech-nologies in Agriculture, v. 3, p. 1-10, 2016.
ALVAREZ, M. A. B.; GAGNÉ, S.; ANTOUN, H. Effect of Compost on Rhizosphere Microflora of the Tomato and on the Incidence of Plant Growth-Promoting Rhizobacteria. Applied and Environmental Microbiology, v. 61, p. 194-199, 1995.
ALVES, B. J. R. et al. Fixação biológica de nitrogênio e fertilizantes nitrogenados no balanço de nitrogênio em soja, milho e algodão. Pesquisa Agropecuária Brasileira, v. 41, p. 449-456, 2006.
ANTOUN, H. Plant-Growth-Promoting Rhizobacteria. Brenner’s Encyclopedia of Genetics, v. 5, p. 353-355, 2013.
ANTOUN, H.; PRÉVOST, D. Ecology of Plant Growth Promoting Rhizobacteria. In: SIDDIQUI, Z. A. PGPR: Biocontrol and Bioferti-lization. 1.ed. Holanda: Springer Netherlands, 2006. p. 1-38.
BISWAS, J. C. et al. Rhizobial Inoculation Influences Seedling Vig-or and Yield of Rice. Agronomy Journal, v. 92, p. 880-886, 2000.
CABALLERO-MELLADO, J. et al. The Tomato Rhizosphere, an Environment Rich in Nitrogen-Fixing Burkholderia Species with Ca-pabilities of Interest for Agriculture and Bioremediation. Applied And Environmental Microbiology, v. 73, p. 5308-5319, 2007.
CABALLERO-MELLADO, J. Microbiología agrícola e interacciones microbianas con plantas. Revista Latinoamericana de Microbiolo-gía, v. 48, p. 154-161, 2006.
CANELLAS, L. P. et al. Foliar application of plant growth-promoting bacteria and humic acid increase maize yields. Journal of Food, Agriculture & Environment, v. 13, p. 146-153, 2015.
CARVALHO, C. et al. Anuário Brasileiro de Hortaliças 2017. Santa Cruz do Sul: Editora Gazeta Santa Cruz, 2016. 56p.
CHANDRA, S. et al. Rhizosfere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and en-hances growth of indian mustard (Brassica campestris). Brazilian Journal of Microbiology, v. 38, p. 124-130, 2007.
CHIN-A-WOENG, T. F. C. et al. Description of the Colonization of a Gnotobiotic Tomato Rhizosphere by Pseudomonas fluorescens Bio-control Strains WCS365, Using Scanning Electron Microscopy. Mo-lecular Plant-Microbe Interactions, v. 10, p. 79-86, 1997.
DUTTA, S.; MISHRA, A. K.; KUMAR, B. S. D. Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biology & Biochemistry, v. 40, p. 452-461, 2008.
FLORES-FÉLIX, J. D. et al. Plants Probiotics as a Tool to Produce Highly Functional Fruits: The Case of Phyllobacterium and Vitamin C in Strawberries. Plos One, v. 10, p. 1-10, 2015.
FLORES-FÉLIX, J. D. et al. Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. Journal of Plant Nutrition and Soil Science, v. 176, p. 876-882, 2013.
GARCÍA-FRAILE, P. et al. Rhizobium Promotes Non-Legumes Growth and Quality in Several Production Steps: Towards a Bioferti-lization of Edible Raw Vegetables Healthy for Humans. Plos One, v. 7, p. 1-7, 2012.
GRAVEL, V.; ANTOUN, H.; TWEDDELL, R. J. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inocula-tion with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biology & Biochemistry, v. 39, p. 1968-1977, 2007.
GRAVEL, V. et al. Control of greenhouse tomato root rot [Pythium ultimum] in hydroponic systems, using plant-growth-promoting mi-croorganisms. Canadian Journal of Plant Pathology, v. 28, p. 475-483, 2006.
HAHN, L. et al. Growth Promotion in Maize with Diazotrophic Bac-teria in Succession With Ryegrass and White Clover. American-Eurasian Journal of Agricultural & Environmental Sciences, v. 14, p. 11-16, 2014.
HAHN, L. et al. Rhizobial Inoculation, Alone or Coinoculated with Azospirillum brasilense, Promotes Growth of Wetland Rice. Revista Brasileira de Ciência do Solo, v. 40, p. 1-15, 2016.
HAHN, L. Promoção de crescimento de plantas gramíneas e leguminosas inoculadas com rizóbios e bactérias associativas. 2013. Tese (Doutorado em Ciência do Solo) - Faculdade de Agro-nomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2013.
HUSSAIN, M. B. et al. Efficacy of Rhizobia for improving Photosyn-thesis, productivity and mineral nutrition of maize. CLEAN – Soil Air Water, v.44, p. 1564-1571, 2016.
HUSSAIN, M. B. et al. Scrutinizing Rhizobia to Rescue Maize Growth under Reduced Water Conditions. Soil Science Society of America Journal, v. 78, p. 538-545, 2014.
JIMÉNEZ-GÓMEZ, A. et al. Effective Colonization of Spinach Root Surface by Rhizobium. In: GONZÁLEZ-ANDRÉS, F.; JAMES, E. Biological Nitrogen Fixation and Beneficial Plant-Microbe Inter-actions. 1.ed. Suíça: Springer International Publishing Switzerland, 2016. p. 109-122.
KECSKÉS, M. L. et al. Effects of bacterial inoculant biofertilizers on growth, yield and nutrition of rice Australia. Journal of Plant Nutri-tion, v. 39, p. 377-388, 2016.
KISHORE, N. et al. Phosphate-solubilizing microorganisms: A Criti-cal Review. In: BAHADUR, B.; SAHIJRAM, M. V. R. L.; KRISHNA-MURTHY, K. V. Plant Biology and Biotechnology: Volume I: Plant Diversity, Organization, Function and Improvement. 1.ed. Índia: Springer India, 2015. p. 307-333.
MANTELIN, S.; TOURAINE, B. Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. Journal of Experimental Botany, v. 55, p. 27-34, 2004.
MISHRA, R. P. N. et al. Rhizobium-Mediated Induction of Phenolics and Plant Growth Promotion in Rice (Oryza sativa L.). Current Mi-crobiology, v. 52, p. 383-389, 2006.
OSORIO FILHO, B. D. et al. Inoculação de rizóbios como bactérias promotoras de crescimento, para produção sustentável de tomatei-ros. In: CONGRESO LATINOAMERICANO DE AGROECOLOGÍA, 5., 2015, La Plata. Memorias del V Congreso Latinoamericano de Agroecología. La Plata: Universidad Nacional de La Plata, 2015.
OSORIO FILHO, B. D. et al. Rhizobia Enhance Growth in Rice Plants Under Flooding Conditions. American-Eurasian Journal of Agricultural & Environmental Sciences, v. 14, p. 707-718, 2014.
PÉREZ-JARAMILLO, J. E. et al. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. The ISME Journal, p. 1-14, 2017.
PERSELLO-CARTIEAUX, F. et al. Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas. Planta, v. 212, p. 190-198, 2001.
RODRÍGUEZ, H.; FRAGA, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, v. 17, p. 319-339, 1999.
SIDDIQUI, Z. A. PGPR: Prospective Biocontrol Agents of Plant Pathogens. In: _____. PGPR: Biocontrol and Biofertilization. Holan-da: Springer Netherlands, 2006. p. 111-142.
SPAEPEN, S.; VANDERLEYDEN, J.; REMANS, R. Indole-3-acetic acid in microbial and microorganism-plant Signaling. FEMS Micro-biology Reviews, v. 31, p. 425-448, 2007.
TCHIAZE, A. I. et al. Influence of Nitrogen Sources and Plant Growth-Promoting Rhizobacteria Inoculation on Growth, Crude Fiber and Nutrient Uptake in Squash (Cucurbita moschata Duchesne ex Poir.) Plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, v. 44, p. 53-59, 2016.
ULLAH, S. et al. Comparative potential of Rhizobium species for the growth promotion of sunflower (Helianthus annuus L.). Eurasian Journal of Soil Science, v. 6, p. 189-196, 2017.
YANNI, Y. G.; DAZZO, F. B. Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant Soil, v. 336, p. 129- 142, 2010.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
A reprodução total dos artigos da Revista em outros meios de comunicação eletrônicos de uso livre é permitida de acordo com a licença Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional.