Resistência térmica de células vegetativas de Clostridium perfringens em patê de fígado com nozes e passas
DOI:
https://doi.org/10.21674/2448-0479.43.501-511Keywords:
conservação alimentar, tratamento térmico, Valor D, modelo preditivoAbstract
Células vegetativas de Clostridium perfringens ATCC 13124 inoculadas em patê de fígado foram submetidas a diferentes tratamentos térmicos para caracterização de sua resistência ao calor e evidenciar a eficiência de modelo preditivo na obtenção de tempos de tratamento térmico. Frações experimentais de aproximadamente 8,50g de amostras foram inoculadas e examinadas para obtenção de valores Dobservados, construção de modelo preditivo, no intervalo térmico de 56,7ºC a 66,3ºC, e, posteriormente, evidenciar a eficiência do modelo através da enumeração de células sobreviventes na temperatura de 67,5ºC e verificação da linearidade em cotejos de valores D (Dobservados e Dcalculados) em faixa térmica entre 56,7ºC e 67,5ºC. A semelhança dos valores Dobservado e Dcalculado (3,14min ≈ 2,94min) constatada no tratamento 2D67,5ºC, a ausência de células sobreviventes nos tratamentos 8D67,5ºC e 12D67,5ºC, juntamente com a marcada linearidade (r = 0,9934) da regressão entre os valores Dobservados (~3,1-16,6min) e Dcalculados (~2,9-15,6min) caracterizaram a eficiência do modelo preditivo no caso estudado.
Downloads
References
ASSELT, E.D.V; ZWIETERING, M.H. A systemic approach to determine global thermal inactivation parameters for various food pathogens. International Journal of Food Microbiology, v. 107, n. 1, p. 73-82. 2006.
BARRETTO, E.S.S. Doenças transmitidas por alimentos: Clostridium perfringens. In: Superintendência de controle de zoonoses, vigilância e fiscalização sanitária (SCZ). Boletim de divulgação técnica e científica, n. 5, Rio de Janeiro, 2000. Disponível em: <http://www6.ensp.fiocruz.br/visa/files/bol5.pdf>. Acessado em: 10 dez. 2017.
BYRNE, B. et al. Thermal inactivation of Bacillus cereus and Clostridium perfringens vegetative cells and spores in pork luncheon roll. Food Microbiology, n. 23, p. 803-808, 2006.
FORSYTHE, S.J. Microbiologia da segurança dos alimentos. Porto Alegre: Artmed, 2002.
GOMES, A.M. et al. Genotipicação de Clostridium perfringens isolados de frangos de corte através da PCR múltipla. Ciência Rural, v. 38, n. 7, p. 1943-1947, 2008. Disponível em: <http://www.scielo.br/pdf/cr/v38n7/a22v38n7.pdf>. Acessado em: 25 nov. 2017.
GOTELLI, N.J.; ELLISON, A.M. Princípios de estatística em ecologia. Porto Alegre: Artmed, 2011.
HEREDIA, N.L. et al. Elevation of the heat resistance of vegetative cells and spores of Clostridium perfringens type A by sublethal heat shock. Journal of Food Protection, v. 60, n. 8, p. 998-1000, 1997.
HUANG, I-H. et al. Clostridium perfringens: sporulation, spore resistance and germination. Journal of Microbiology, Bangladesh, v. 24, n. 1, p. 1-8, 2007.
INTERNATIONAL COMMISSION ON MICROBIOLOGICAL SPECIFICATIONS FOR FOODS - ICMSF. Microorganisms in Foods. London: Blackie Academic and Professional. 1996.
JACKSON, T.C. Thermoduric microorganisms and heat-resistance measurements. In: SALFINGER, Y.; TORTORELLO, M.L. (Eds.). Compendium of methods for the microbiological examination of foods. 5th ed. Washington: Americam Public Health Association, 2015. p. 191-200.
JAY, J.M. Microbiologia dos alimentos. 6.ed. Porto Alegre: Artmed, 2005.
JUNEJA, V.K. Thermal inactivation of microorganisms. In: JUNEJA, V.K.; SOFOS, J.N. (Eds.). Control of Foodborne Microorganisms. first ed. New York: Marcel Dekker, 2000. p. 13-52.
JUNEJA, V.K.; MARMER, B.S. Thermal inactivation of Clostridium perfringens vegetative cells in ground beef and turkey as affected by sodium pyrophosphate. Food Microbiology, n. 15, p. 281-287, 1998.
JUNEJA, V.K. et al. Heat resistance of Clostridium perfringens vegetative cells as affected by prior heat shock. Journal of Food Safety, v. 21, p. 127-139, 2001.
JUNEJA, V.K. et al. Predictive model for growth of Clostridium perfringens during cooling of cooked ground chicken. Innovative Food Science and Emerging Technologies, n. 10, p. 260-266, 2009.
JUNEJA, V.K. et al. Clostridium perfringens. In: JUNEJA, V.K.; SOFOS, J.N. (Eds.), Pathogens and Toxins in Foods: Challenges and Interventions. Washington: ASM Press, 2010. p. 53-70.
LABBE, R.G. Clostridium perfringens. In: SALFINGER, Y.; TORTORELLO, M.L. (Eds.). Compendium of methods for the microbiological examination of foods. 5th ed. Washington: Americam Public Health Association, 2015. p. 403-410.
LABBE, R.J.; JUNEJA, V.K. Clostridium perfringens. In: CLIVER, D.O.; RIEMANN, H. (Eds.). Foodborne Diseases. San Diego: Academic Press, 2002. p. 192-234.
MCCLANE, B.A. Clostridium perfringens. In: DOYLE, M.P.; BEUCHA, L.R. (Eds.). Food Microbiology: Fundamentals and Frontiers. Washington: ASM Press, 2007. p. 423-444.
MCMEEKIN, T.A. et al. Predictive microbiology: towards the interface and beyond. International Journal Food Microbiology, n. 73, p. 395-407, 2002.
MURPHY, R.Y. et al. Inactivation of Salmonella and Listeria in ground chicken breast meat during thermal processing. Journal of Food Protection, Fayertteville, v. 62, n. 9, p. 980-985, 1999.
NOVAK, J.S; YUAN, J.T. Increased inactivation of ozone-treated Clostridium perfringens vegetative cells and spores on fabricated beef surfaces using mild heat. Journal of Food Protection, Chicago. v. 67, n. 2, p. 342-346, 2004.
NOVAK, J.S. et al. Heat treatment adaptations in Clostridium perfringens vegetative cells. Journal of Food Protection, v. 64, n. 10, p. 1527-1534, 2001.
NOVAK, J.S. et al. Viability of Clostridium perfringens, Escherichia coli, and Listeria monocytogenes surviving mild heat or aqueous ozone treatment on beef followed by heat, alkali, or salt stress. Journal of Food Protection, v. 66, n. 3, p. 382-389, 2003.
OLSON, J.C.; NOTTINGHAM, P.M. Temperature. In: SILLIKER, J.H. Microbial ecology of food. New York: Academic Press. 1980, p. 1-37.
PAGÁN, R. et al. Effects of several factors on the heat-shock-induced thermotolerance of Listeria monocytogenes. Applied and Environmental Microbiology, v. 63, n. 8, p. 3225-3232, 1997.
RAJU, D.; SARKER, M.R. Comparison of the Levels of Heat Resistance of Wild-Type, cpe Knockout, and cpe Plasmid-Cured Clostridium perfringens Type A Strains. Applied and Environmental Microbiology, v. 71, n. 11, p. 7618-7620, 2005.
ROY, R.J. et al. Thermal inactivation of Clostridium perfringens after growth at several constant and linear rising temperatures. J. Food Science, v. 46, n. 5, p. 1586-1591, 1981.
SALFINGER, Y.; TORTORELLO, M.L. (Eds.). Compendium of methods for the microbiological examination of foods. 5th ed. Washington: Americam Public Health Association, 2015.
SARKER, M.R. et al. Comparative experiments to examine the effects of heating on vegetative cells and spores of Clostridium perfringens isolates carrying plasmid genes versus chromosomal enterotoxin genes. Applied Environmental Microbiology, v. 66, n. 8, p. 3234-3240, 2000.
SILVA, N. et al. Manual de Métodos de Análise Microbiológica de Alimentos e Água. 4 ed. São Paulo: Livraria Varela, 2010.
SINELL, H. J. Interacting factors affecting mixed populations. In: SILLIKER, J.H. Microbial ecology of food. New York: Academic Press, 1980. p. 215-231.
STRINGER, S.C. et al. Thermal inactivation of Escherichia coli 0157:H7. Journal of Applied Microbiology Symposium Supplement, n. 88, p. 798-898, 2000.
WIJNANDS, L.M. et al. Heat sensitivity of Clostridium perfringens. Rijksinstituut voor Volksgezondheid en Milieu. Bilthoven, 2009. Disponível em: <http://www.rivm.nl/dsresource?objectid=befe1a48-4c79-4b8f-aa11-4af34f4fab83&type=org&disposition=inline>. Acessado em: 15 dez. 2017.
Downloads
Published
How to Cite
Issue
Section
License
A reprodução total dos artigos da Revista em outros meios de comunicação eletrônicos de uso livre é permitida de acordo com a licença Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional.