Avaliação da fotoestabilidade do ácido rosmarínico: efeito da radiação ultravioleta, pH e peróxido de hidrogênio

Autores

DOI:

https://doi.org/10.21674/2448-0479.83.228-235

Palavras-chave:

Ácido rosmarínico, antioxidante, cinética, fotoestabilidade.

Resumo

As espécies reativas de oxigênio são essenciais em vários processos biológicos, porém, quando em excesso causam estresse oxidativo levando a doenças neurodegenerativas e cardiovasculares e ao envelhecimento precoce. Os antioxidantes atuam de forma a prevenir os danos oxidativos a nível celular. O ácido rosmarínico é um antioxidante, além de apresentar atividade antiviral, antibacteriana, anti-inflamatória e neuroprotetora. Contudo, informações sobre a fotoestabilidade deste composto fenólico são limitadas. Este trabalho visa avaliar a cinética de decomposição fotolítica do ácido rosmarínico frente à radiação UVA e UVC, em diferentes pHs, e na presença e na ausência do peróxido de hidrogênio (H2O2). As amostras forram irradiadas com lâmpadas UVA ou UVC, ambas de 15 W de potência. A cinética de decomposição do antioxidante foi determinada no comprimento de onda (λ) de 326 nm, utilizando-se um espectrofotômetro UV-Vis (Cary 50 Bio-Varian). Além disso, foi verificado o efeito do pH e do H2O2 na fotoestabilidade. O ácido rosmarínico mostrou maior estabilidade à radiação UVA do que UVC, e a decomposição seguiu uma cinética de primeira ordem. Na presença da radiação UVC, o antioxidante é mais estável em pHs mais elevados, ao passo que com radiação UVA a estabilidade diminui com o aumento do pH. Ademais, a fotoestabilidade é 40 vezes menor na presença do H2O2. Os resultados indicaram que o ácido rosmarínico atua de maneira eficiente na captura do radical hidroxil (OH•), sendo mais estável frente à radiação de menor energia e a estabilidade é dependente do pH.  

 

Downloads

Não há dados estatísticos.

Biografia do Autor

Thiane Deprá Saravalle, Universidade Federal de Santa Maria (UFSM)

http://lattes.cnpq.br/2989128901697289

Brenda Bopp Baptista, Universidade Federal de Santa Maria (UFSM)

http://lattes.cnpq.br/0144364048326519

Carmen Luisa Kloster, Universidade Federal de Santa Maria (UFSM)

http://lattes.cnpq.br/3218958424322612

Clarissa Piccinin Frizzo, Universidade Federal de Santa Maria (UFSM)

http://lattes.cnpq.br/0029279904716491

Marcos Antonio Villetti, Universidade Federal de Santa Maria (UFSM)

http://lattes.cnpq.br/8504489050993642

Referências

ADOMAKO-BONSU, A. G.; CHAN, S. L.; PRATTEN, M.; FRY, J. R. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics. Toxicology in Vitro, v. 40, p. 248–255, 2017. Elsevier Ltd. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0887233317300164>.

BULGAKOV, V. P.; INYUSHKINA, Y. V.; FEDOREYEV, S. A. Rosmarinic acid and its derivatives: biotechnology and applications. Critical Reviews in Biotechnology, v. 32, n. 3, p. 203–217, 2012. Disponível em: <http://www.tandfonline.com/doi/full/10.3109/07388551.2011.596804>.

CHUNG, C. H.; JUNG, W.; KEUM, H.; KIM, T. W.; JON, S. Nanoparticles Derived from the Natural Antioxidant Rosmarinic Acid Ameliorate Acute Inflammatory Bowel Disease. ACS Nano, v. 14, n. 6, p. 6887–6896, 2020. Disponível em: <https://pubs.acs.org/doi/10.1021/acsnano.0c01018>.

GU, L.; WU, T.; WANG, Z. TLC bioautography-guided isolation of antioxidants from fruit of Perilla frutescens var. acuta. LWT - Food Science and Technology, v. 42, n. 1, p. 131–136, 2009. Elsevier Ltd. Disponível em: <http://dx.doi.org/10.1016/j.lwt.2008.04.006>.

HUERTA-MADROÑAL, M.; CARO-LEÓN, J.; ESPINOSA-CANO, E.; AGUILAR, M. R.; VÁZQUEZ-LASA, B. Chitosan – Rosmarinic acid conjugates with antioxidant, anti-inflammatory and photoprotective properties. Carbohydrate Polymers, v. 273, n. May, p. 118619, 2021. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0144861721010067>.

IGHODARO, O. M.; AKINLOYE, O. A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, v. 54, n. 4, p. 287–293, 2018. Alexandria University Faculty of Medicine. Disponível em: <https://doi.org/10.1016/j.ajme.2017.09.001>.

KHOJASTEH, A.; MIRJALILI, M. H.; ALCALDE, M. A.; et al. Powerful Plant Antioxidants: A New Biosustainable Approach to the Production of Rosmarinic Acid. Antioxidants, v. 9, n. 12, p. 1273, 2020. Disponível em: <https://www.mdpi.com/2076-3921/9/12/1273>.

LEE, J.; KIM, Y. S.; PARK, D. Rosmarinic acid induces melanogenesis through protein kinase A activation signaling. Biochemical Pharmacology, v. 74, n. 7, p. 960–968, 2007. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0006295207003681>.

MARCHEV, A. S.; VASILEVA, L. V.; AMIROVA, K. M.; et al. Rosmarinic acid - From bench to valuable applications in food industry. Trends in Food Science & Technology, v. 117, n. September 2020, p. 182–193, 2021. Elsevier Ltd. Disponível em: <https://doi.org/10.1016/j.tifs.2021.03.015>.

NADEEM, M.; IMRAN, M.; ASLAM GONDAL, T.; et al. Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review. Applied Sciences, v. 9, n. 15, p. 3139, 2019. Disponível em: <https://www.mdpi.com/2076-3417/9/15/3139>.

NICOLAI, M.; PEREIRA, P.; VITOR, R. F.; et al. Antioxidant activity and rosmarinic acid content of ultrasound-assisted ethanolic extracts of medicinal plants. Measurement, v. 89, p. 328–332, 2016. Elsevier Ltd. Disponível em: <http://dx.doi.org/10.1016/j.measurement.2016.04.033>.

PETERSEN, M. Rosmarinic acid: new aspects. Phytochemistry Reviews, v. 12, n. 1, p. 207–227, 2013. Disponível em: <http://link.springer.com/10.1007/s11101-013-9282-8>.

PHANIENDRA, A.; JESTADI, D. B.; PERIYASAMY, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian Journal of Clinical Biochemistry, v. 30, n. 1, p. 11–26, 2015. Disponível em: <http://link.springer.com/10.1007/s12291-014-0446-0>.

RUTELY C., B. C.; JEAN-M., F.; WALTER Z., T.; XOCHITL, D.-B.; MIKA, S. Towards reliable quantification of hydroxyl radicals in the Fenton reaction using chemical probes. RSC Advances, v. 8, n. 10, p. 5321–5330, 2018. Disponível em: <http://xlink.rsc.org/?DOI=C7RA13209C>.

SÁNCHEZ-CAMPILLO, M.; GABALDON, J. A.; CASTILLO, J.; et al. Rosmarinic acid, a photo-protective agent against UV and other ionizing radiations. Food and Chemical Toxicology, v. 47, n. 2, p. 386–392, 2009. Elsevier Ltd. Disponível em: <http://dx.doi.org/10.1016/j.fct.2008.11.026>.

SANTHIAGO, M.; PERALTA, R. A.; NEVES, A.; MICKE, G. A.; VIEIRA, I. C. Rosmarinic acid determination using biomimetic sensor based on purple acid phosphatase mimetic. Analytica Chimica Acta, v. 613, n. 1, p. 91–97, 2008. Disponível em: < https://doi.org/10.1016/j.aca.2008.02.050 >.

Downloads

Publicado

2022-12-23

Como Citar

Deprá Saravalle, T., Bopp Baptista, B. ., Kloster, C. L. ., Piccinin Frizzo, C. ., & Villetti, M. A. (2022). Avaliação da fotoestabilidade do ácido rosmarínico: efeito da radiação ultravioleta, pH e peróxido de hidrogênio. Revista Eletrônica Científica Da UERGS , 8(3), 228–235. https://doi.org/10.21674/2448-0479.83.228-235

Edição

Seção

N. Especial Ciências Exatas e Engenharias 2022